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Abstract. We present heuristics that help to identify suitable consumer-oriented

parts of enterprise systems which could be re-engineered as microservices. Our

approach assesses the key structural and behavioural properties common to both

enterprise and microservice systems, as needed to guide a microservices discov-

ery process and coherently assess restructuring recommendations. Building upon

existing business object and system structural definitions, we present heuristics for

two fundamental areas of microservice discovery, namely function splitting based

on object subtypes (i.e., the lowest granularity of software based on structural

properties) and functional splitting based on common execution fragments across

software (i.e., the lowest granularity of software based on behavioural properties).

A prototype analysis tool was developed based on the defined heuristics and ex-

periments show that it can identify microservice designs which support multiple

microservice characteristics, such as high cohesion, low coupling, high scalability,

high availability, and processing efficiency while preserving coherent features of

enterprise systems. In particular, we illustrate the usefulness of this new approach

by conducting a case study based on customer management systems: SugarCRM

and ChurchCRM.
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1 Introduction

Microservices have emerged as the latest style of service-based software allowing sys-

tems to be distributed through the cloud as fine-grained components, typically with

individual operations, in contrast to services under a Service-Oriented Architecture

(SOA) which include all logically related operations [1]. As such, microservices allow

specific parts of systems and the business processes they support, down to individual

tasks, to be scaled up and replicated through the cloud, and be flexibly composed in

Web, mobile computing, and Internet-of-Things (IoT) applications. These benefits orig-

inally led Netflix, and now Twitter, eBay, Amazon and other Internet players, to develop

novel architectures for software solutions as microservices. Nonetheless, microservices

have so far not been adopted for the dominant form of software in businesses, namely

enterprise systems, limiting such systems’ evolution and their exploitation of the full

benefits of cloud-enabled platforms such as Google Cloud, Amazon AWS and IoT [2].



Enterprise systems, such as enterprise resource planning (ERP), customer relation-

ship management (CRM) and supply chain management are large and complex, and

contain complex business processes encoded in application logic managing business

objects (BOs), in typically many-to-many relationships [3]. Restructuring enterprise

systems as microservices is technically cumbersome, requiring tedious search and iden-

tification of suitable parts of the system to restructure, program code rewrites, and

integration of the newly developed microservices with the ‘backend’ enterprise systems.

This is a costly and error-prone task for developers, because enterprise systems have

millions of lines of code and thousands of BOs they manage, entailing a multitude of

functional dependencies, in and across many software packages and modules. In ad-

dition, microservices are the most fine-grained and loosely-coupled form of software

components upon which to restructure large-scale enterprise systems. This leads to major

uncertainties about the best way to split enterprise systems functions as microservices,

to achieve high scalability and availability and low system latencies through the cloud,

while attaining high cohesion and low coupling between software components.

Automated software re-engineering techniques have been proposed to improve the

efficiency of transforming legacy applications, addressing specifically cohesion and

coupling of software packages and components using static analysis techniques that

focus on source code and dynamic analysis techniques that focus on software execution

recorded in system logs. Even though these analyses proposed to improve software

search and metrics, studies show that the success rate of software re-modularisation

techniques, especially for large systems, remains low [4]. The key stumbling blocks are

the limited insights available from syntactic structures of software code for profiling

software dependencies and not identifying the semantics available through the business

object relationships [5].

Enterprise systems can provide enriched semantic insights, available through the

BOs that they manage which influence the software structure and the processes they

support. For instance, an order-to-cash process in SAP ERP is supported through func-

tions of software components: multiple sales orders, deliveries shared across different

customers, shared containers in transportation carriers, and multiple invoices and pay-

ments. To support this process, multiple functions are invoked asynchronously, reflecting

BO relationship types and cardinalities, and are seen through cross-service interactions,

correlations, and data payloads [6]. Such insights provided by BO relationships are

promising for improving the feasibility of automated discovery applications. As ex-

amples, Pẽrez-Castillo et al. [7] used transitive closures of strong BO dependencies

derived from databases to recommend software functions hierarchies, while Lu et al. [8]

demonstrated process discovery using SAP ERP logs based on BOs.

This paper presents discovery techniques that help to identify suitable consumer-

oriented parts of enterprise systems which could be re-engineered as microservices

with desired characteristics such as high cohesion, low coupling, high scalability, high

availability and high processing efficiency. It does so by providing an abstraction of

the systems architecture, using key structural and behavioural properties common to

both enterprise and microservices systems, considered essential to guide microservices

discovery processes and coherently assess their potential restructuring. The structural

properties address the functional composition of software, namely functions and their BO



Create-Read-Update-Delete (CRUD) operations, while behavioural properties focus on

system executions, at the level of operation invocations, reflecting single-entry-single-

exit sequences characteristic of these systems. This, in principle, allows enterprise

systems to be analysed at different units of structural and behavioural granularity, and

the resulting restructure recommendations to be conveniently assessed for preservation

of structural and behavioural properties. This paper addresses two fundamental areas

of microservice discovery, namely function-splitting based on object subtypes (i.e., the

lowest granularity of software based on structural properties) and functional splitting

based on common execution fragments across software (i.e., the lowest granularity of

software based on behavioural properties). This, we argue, provides a solid basis for

future development of further microservices discovery heuristics.

The remainder of the paper is structured as follows. Section 2 presents structural and

behavioural properties of software systems, while Section 3 exploits these properties

to propose heuristics for discovering microservises in enterprise systems. Section 4

discusses an implementation and validation of the proposed heuristics. Related work is

summarized in Section 5. The paper closes with a conclusion.

2 Structural and Behavioural Properties of

Enterprise and Microservice Systems

This section describes the essential properties of a target system architecture that com-

prise an enterprise system (ES) and a microservice (MS) system, which is depicted in

Fig. 1. This architecture will be used in our MS discovery approach (detailed in Section

3). The architecture reflects a unified software structure for both an ES and MS system,

since a proper system migration from an ES to MS system is an incremental process in

which the most prominent components are extracted and remodularized as MSs first [1].

Such remodularized MSs run in a cloud setting and are integrated with the ‘backend’

enterprise system as depicted in the Fig. 1.

Fig. 1: Architecture of enterprise and microservices systems.



The software structure of an ES (e.g., an ERP system) consists of a set of self-

contained modules (e.g., software components) drawn from different subsystems (e.g.,

production management), deployed on a specific execution platform. Modules consist

of a set of functions (e.g., software classes) and each function consists of a number of

operations (e.g., methods) aimed at manipulating BOs through CRUD operations which

typically have database access logic or data processing logic applied to data stored in

program variables and constants. The data stored in a centralized database associated

with a deployed ES relates to BOs which process data resulting from business process

executions supported through functions (such as transactions).

MSs are remodularized and potentially extended parts or functions of ESs, support-

ing consumer applications running in cloud applications. Since MSs are functionally

isolated and loosely-coupled parts connected to each other, much like the components

of a distributed system, they tend to concern individual BOs, locally managed through

a database. The managed data of MSs is synchronized at discrete intervals with similar

MS instances and with the backend ES. One or more MSs can run in an execution envi-

ronment known as a cloud container, configured for specific execution characteristics,

such as scalability or availability applying to all the MSs of the container.

Despite structural differences, the behaviour of an ES and an MS system is based

on the invocation of operations, in well-defined processing sequences reflecting the

relationships of BOs they manipulate. For example, the creation of a ‘purchase order’

will result in the invocation of functions involving the creation of ‘line items’ reflecting

a strict containment of objects. Similarly, processing sequences between ‘Shipper’ and

‘Shipping order’ reflect weak containment while processing sequences between ‘leads’

and ‘campaigns’ reflect an association. In addition, normalization of a BO can result in

additional process sequences. For example, the creation of a ‘shipment’ BO will result in

an invocation of a function related to different shipments subtypes such as ‘ground home

delivery shipment’ and ‘intra UAESO shipment’ based on the operational parameters

provided at run time. These different execution sequences of operations reflect a set of

single-entry-single-exit (SESE) regions [9] in an ES’s executions.

Although an MS system executes in a manner similar to an ES, there are specific

characteristics applicable only to an MS. Generally MSs run as distributed systems

which are deployed through different containers that help the MS system to achieve high

scalability and availability while executing services in an asynchronous manner and

managing security through configurations of API gateways [1]. Scalability can be defined

as allocation and de-allocation of the resources to containers on demand according to

the configuration properties. Such configuration properties include load balancing and

resource allocation policies optimizing the resources within a container allowing it

to provide high scalability at lower cost. Furthermore, the configuration properties

define circuit breaker threshold values for each MS which resides in a container, which

assures that a request is redirected to another MS if it did not get a response from the

initially accessed MS within the threshold time period resulting in high availability.

Since there are multiple MSs in a single container, it can process multiple client requests

in an asynchronous manner while aligning with the system requirements of the ES. All

the MSs communicate through adapters which synchronize with the database system

which resides in the legacy ES and this helps to achieve consistency among all the



microservices which are distributed among multiple containers. Finally, each MS is

developed in order to provide a specific functionality to the end user or the system,

which makes them highly cohesive and loosely coupled services. This understanding

leads us to the following formal characterization of the environment.

Let I and O be a universe of input types and output types, respectively. Let OP, T

and B be, respectively, a universe of operations, database tables, and business objects.

Finally, let β be a binary relation on B such that β+ is irreflexive3. Relation β defines

a subtype relation on business objects, i.e., for every (b1, b2) ∈ β
+ we say that b2 is a

subtype of b1. As proposed in this paper, techniques for the discovery of microservices

rely on abstractions of ESs, as defined below.

The data related BOs in ESs are disseminated through several database tables.

Definition 2.1 (Business object).

A business object b is characterized by a collection of database tables, i.e., b ⊆ T. y

The BOs in ESs have complex relationships with the operations which perform CRUD

processes on them. Such operations are encapsulated in different functions of ESs and

MSs.

Definition 2.2 (Operation).

An operation op is a triple (I,O,T), where I ∈ I∗ is a sequence of inputs, O ∈ O∗ is a

sequence of outputs, and T ⊆ T is a set of database tables.4 y

An ES can be seen as a finite automaton with operations as labels.

Definition 2.3 (Enterprise system).

An enterprise system is a 5-tuple (Q,Λ, δ, q0, A), where:

◦ Q is a finite nonempty set of states,

◦ Λ is a set of operations, such that Q and Λ are disjoint,

◦ δ : Q × (Λ ∪ {τ}) → P(Q) is the transition function, where τ a is a special silent

operation such that τ < Q ∪ Λ,

◦ q0 ∈ Q is the start state, and

◦ A ⊆ Q is the set of accept states.5 y

Let C and M be a universe of containers and microservices, respectively. Let S be an

enterprise system. By SESE(S), we denote the set of all (generalized) SESE fragments

of S, cf. [9]; clearly, one can interpret an ES as a workflow graph with vertices defined

by its states and a flow relation defined by its transition function. Each SESE fragment of

an ES induces a function, or a call graph, i.e., a subgraph of ES. We abstract a function

as a triple (I,O,OP), where I and O are sequences of inputs and outputs, respectively,

and OP is a set of operations. For our purposes, we define a MSs system as follows.

Definition 2.4 (Microservices system). A microservices system of an enterprise system

S = (Q,Λ, δ, q0, A) is a 5-tuple (S,C,M, σ, µ), where:

3 Given a binary relation α, by α+ we denote the transitive closure of α.

4 Given a set A, by A∗ we denote the set of all finite sequences that can be generated by

concatenating elements of A.

5 Given a set A, by P(A), we denote the powerset of A.



◦ C ⊆ C is a set of containers,

◦ M ⊆ M is a set of microservices,

◦ σ : C → P(M) \ ∅ is a deployment function that maps each container c ∈ C onto a

non-empty set of microservices σ(c) that are deployed on c, and

◦ µ : M → P(SESE(S)) \ ∅ is a microservice definition function that maps each

microservice m ∈ M onto a non-empty set of SESE fragments, a.k.a functions,

µ(m) of S, such that:

− No two microservices are defined using the same function, i.e.,

∀m1 ∈M ∀m2 ∈M : (m1 , m2) ⇒ ((µ(m1) ∩ µ(m2)) = ∅), and

− Every two functions used to define the microservices in M are either disjoint,

i.e., do not share an edge, or are in a subgraph relation. y

Given an enterprise system S, (S, {c}, {m}, {(c, {m})}, {(m, {S})}), where c ∈ C and

m ∈ M, is its elementary microservices system, or the elementary enterprise and mi-

croservices architecture induced by S.

3 Automated Microservice Discovery

As described in Section 2, the behaviour of an ES and an MS system is based on the

invocation of functions which consist of well-defined sequences of operations governed

by BO relationships. Such sequences illustrate a particular execution pattern based

on the structure and behaviour of an organization. Therefore, we argue that a proper

analysis of these sequences of operations will help to derive prominent microserviceable

components. This assumption leads us to two heuristics which assist in MS discovery.

Fig. 2: Patterns of system executions and BO relationships.

As an example, assume that an ES has three hypothetical processing sequences, as

depicted in Fig. 2, in which each node of the sequences represents a system state after

performing a CRUD operation. These states are linked to the BOs on which different

CRUD operations were performed. Figs. 2(a) and 2(b) capture the same execution

order dependencies between states ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, and ‘G’. Furthermore, the

overlap between the execution patterns is high, i.e., more than 80%, which emphasizes

that CRUD operations were performed on the same BOs. For instance, the campaign



management module in SugarCRM describes different types of publicity campaigns,

such as newsletter, email, and non-email. The execution paths and the BOs they execute

upon are similar. However, the BO attributes they use in the execution processes are

often different. This execution behaviour is explicit because of the structural splitting

of objects at the BO level, as described by Halpin and Morgan [10]. To address this

phenomenon, we define Heuristic 1.

Heuristic 1. (Subtype) Given an enterprise system S, a subtype relation exists between

a parent call graph x = (I,O,OP) ∈ SESE(S) and a child call graph x ′
= (I ′,O′,OP′) ∈

SESE(S), iff I ′ ⊆ I, OP′ ⊆ OP, and B′ ⊆ B, where B′ and B are the BOs manipulated

by OP′ and OP, respectively. To ensure that the call graphs execute on the same BOs,

we require that 80% of the states of the parent appear in the child.

In addition, some execution sequences can occur often when executing a software

system. As an example, the execution pattern ‘A’, ‘B’, ‘D’, ‘F’, ‘G’ occurs in Figs. 2(a),

2(b), and 2(c). This phenomenon depends on the functional relationships that occur

during execution time. For example, ‘B’ precedes ‘D’ in every execution because, for

instance, the data in ‘B’ is required for the execution of ‘D’. In the functional structure

level this can be described as a ‘has a relationship’ property, in which a class object

of ‘D’ is referenced inside ‘B’. Such functional structure emphasizes that the same

behaviour should be preserved in all the system executions. To address this issue, we

define Heuristic 2.

Heuristic 2. (Common subgraph) Given an enterprise system S, a common subgraph

of two call graphs x, x ′ ∈ SESE(S) is a call graph x ′′ ∈ SESE(S), such that x ′′ ⊆ x and

x ′′ ⊆ x ′.

A common subgraph which captures frequent executions can be used as a basis for

defining a microservice. This heuristic can be generalized to subgraphs common to

multiple call graphs. Intuitively, choosing smaller common subgraphs produces smaller

microservices which helps to achieve higher scalability. On the other hand, choosing

larger subgraphs produces larger microservices which helps reduce communication

overheads and improve system efficiency.

Heuristics 1 and 2 can guide the discovery of microservices that potentially sup-

port multiple microservice characteristics, such as high cohesion, low coupling, high

scalability, availability, and processing efficiency, while preserving coherent features of

enterprise systems. In what follows, this claim gets verified.

3.1 Discovery Process

Our microservice discovery and recommendation process based upon the above heuris-

tics consists of two components, i.e., a Business Object Analyser (BOA) and a System

Dynamic Analyser (SDA), as depicted in Fig. 3.

Since MSs are focused around accessing and transferring states of BOs, or partitions

of BOs, in the system [11], it is important to identify the BOs in a given ES. Therefore,

the BOA is comprised of a System Operation Extraction Model (SOEM) and a Business

Object Derivation Model (BODM). The SOEM evaluates all the SQL queries to identify



Fig. 3: An overview of our microservice discovery and recommendation process.

the relationships between database tables, while the BODM derives the BOs based on

the identified relationships and data similarities, as described by Nooijen et al. [12].

The BOs identified by the BOA are provided as input to the SDA along with call

graphs of the ES. The graph clustering and analysis model in the SDA identifies the

Frequent Execution Patterns (FEP) in the provided set of SESE(S). These FEPs get

evaluated against the aforementioned heuristics and classified into different categories,

as described in Section 3.2. The categorized patterns are evaluated by BO relationship

analysis and a SESE derivation model. The SESE derivation model identifies the BOs

which are related to each node in the extracted graph pattern and the SESE regions re-

lated to each BO. Finally, the Microservice Recommendation Interface (MRI), provides

different configuration models for MSs by evaluating the results of the system dynamic

analysis model. Due to space limits, this paper only addresses the SDA and the MRI,

which analyse the system execution patterns and recommend MS configuration models.

3.2 Microservice Discovery Algorithms

Given a set of call graphs of a legacy system, like the ones shown in Fig. 2, the SDA and

MRI derive sets of MS recommendations based on Heuristics 1 and 2 using Algorithms 1

and 2. Algorithm 1 derives a set of subgraphs in the given set of call graphs of an ES,

while Algorithm 2 analyses the subgraphs to identify functions which operate on single

BOs to provide MS migration recommendations.

Algorithm 1 comprises four steps. The first step involves function GRAPHSUMMARY ,

which computes the set of adjacency matrices MT of the call graphs SESE(S) (line 1).

Each adjacency matrix is generated in two steps. First, the function constructs the set of

all distinct states of the graphs. For example, for the three call graphs in Fig. 2, this set

comprises states ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, and ‘H’. Then, for each call graph, the

function creates a matrix mt ∈ MT of size N×N , where N is the number of distinct states

(for the graphs in Fig. 2, the number of distinct states is eight). In a matrix mt ∈ MT , a

transition between two states q and q′ of the corresponding call graph is represented by

‘1’ and the absence of a transition is represented by ‘0’.



Algorithm 1 Calculate AAM and AGM

Require: An enterprise system S.

1: MT = {mt1 , . . . ,mtn} := GRAPHSUMMARY(SESE(S)) //Generate the summary matrix

2: /∗ Iterate through each mtk in MT ∗/

3: for each k ∈ [1 .. n] do

4: for each i ∈ [0 .. N − 1], where N is the number of distinct states in SESE(S) do

5: for each j ∈ [0 .. N − 1] do

6: mta[i][ j] := mta[i][ j] + mtk [i][ j]

7: mtg[i][ j] := mtg[i][ j] ∪ {k}

8: end for

9: end for

10: end for

11: Sub = 〈sub0, . . . , subm〉 := IDENTIFYSUBGRAPHS(mta,mtg) //Get common subgraphs

12: for each i ∈ [0 ..m] do

13: parents := {mt ∈ MT | subi is a subgraph of mt}

14: /∗ Record the similarity value for subgraph subi in the Sim list ∗/

15: Simi := similarity(subi, parents)

16: end for

17: return (Sub, Sim)

The second step of Algorithm 1 constructs two matrices, the Augmented Adjacency

Matrix (AAM) mta and Augmented Graph Matrix (AGM) mtg, which are of size N × N

(lines 3–10). At the beginning, all the values of mta are initialized to ‘0’ and all the

values of mtg are initialized to the empty set. Then, the algorithm iterates over adjacency

matrices mtk ∈ MT to compute statistics on transitions. The indices of the graphs that

contain a transition are recorded in matrix mtg and the number of graphs that contain the

transition gets stored in matrix mta. The AAM and AGM generated for the call graphs

in Fig. 2 are shown in Fig. 4. In Fig. 4(a), the value in the AAM row ‘A’, column ‘B’ is

‘3’ because all the three call graphs depicted in Fig. 2 have a transition (an edge) from

node ‘A’ to node ‘B’. Similarly, in Fig. 4(b), the value in the AGM row ‘A’, column ‘B’

encodes the graphs that contain the corresponding transition. Since the transition is in

all the three call graphs, the value has been set to ‘1’, ‘2’, ‘3’.

In the third step of Algorithm 1 the generated matrices mta and mtg are passed as

input to the IDENTIFYSUBGRAPHS function which computes the adjacency matrices

of the common subgraphs Sub of the call graphs (line 11).

In the fourth step, the algorithm iterates over subgraphs in Sub and measures the

similarity Simi between subgraph subi and all its parent graphs (lines 12–16). The

similarity is identified as the ratio of the number of nodes in subi to the number of

distinct nodes in all the parent graphs. Finally, the algorithm returns the identified

common subgraphs and calculated similarity values (line 17). If a similarity value is

greater than 0.8 for a particular subgraph, we identify that the subgraph and its parent

call graphs satisfy Heuristic 1.

The subgraphs which are common to all the call graphs in SESE(S) satisfy Heuris-

tic 2. However, further processing is required to identify functions that act upon single

BOs. To accomplish this check, we present Algorithm 2.



Algorithm 2 Compute functions for given BOs

Require: A set of BOs B and list of graphs Sub = 〈sub0, . . . , subm〉

1: for each i ∈ [0 ..m] do

2: Q := ∅

3: for each node q in subi do

4: if q is incident to less than three edges then

5: Q := Q ∪ {q}

6: end if

7: end for

8: QSi := Q //QS is a list of sets of nodes

9: end for

10: Y := GENERATEGRAPHS(QS, Sub)

11: Z := Y

12: for each y ∈ Y do

13: /∗ Evaluate graph y to confirm that every operation in y is connected to the same b ∈ B

and if not remove it from Z ∗/

14: if y operates on more than one BO in B then

15: Z := Z \ {y}

16: end if

17: end for

18: return Z //Each function in Z operates over a single BO

Algorithm 2 consists of three steps. The first step involves identifying the states

of the input subgraphs with no more than two incident transitions, a.k.a single-entry-

single-exit states (lines 1–9). It is expected that the input subgraphs are generated by

Algorithm 1. The loop of lines 1–9 iterates over all the subgraphs, while the loop of

lines 3–7 runs over all the nodes of a current subgraph to extract and record the “SESE”

states (line 5). The constructed sets of “SESE” states get stored in list QS on line 8.

In the second step of the algorithm function GENERATEGRAPHS constructs con-

nected graphs composed of the nodes in QS that are subgraphs of the graphs in Sub, and

records the result in set Y (line 10).

A B C D E F G H A B C D E F G H

A 0 3 0 0 0 0 0 0 A 1,2,3

B 0 0 2 3 0 0 0 0 B 1,2 1,2,3

C 0 0 0 0 2 2 0 0 C 0 1,2 1,2

D 0 0 0 0 0 3 0 0 D 1,2,3

E 0 0 0 0 0 0 2 0 E 1,2

F 0 0 0 0 0 0 3 0 F 1,2,3

G 0 0 0 0 0 0 0 1 G 1

H 0 0 0 0 0 0 0 0 H

(a) AAM (b) AGM

Fig. 4: Intermediate matrices used by Algorithm 1 computed for the call graphs in Fig. 2.



In the third step, the algorithm evaluates each graph y ∈ Y to verify whether all the

operations captured in y are carried out on the same BO (lines 11–17). If the operations

relate to more than one BO, the graph gets removed from set Z , which initially is

assigned to contain all the graphs in Y . The BO mapping is achieved by evaluating each

database table t associated with operations of graph y and mapping t to the BOs that are

characterized by t. If an operation, or several operations, of y relates to database tables

that characterize more than one BO, then y gets removed from Z . At the end of the third

step of Algorithm 2, set Z is composed of all the functions that operate on a single BO,

and this set is returned on line 18. Finally, the functions in set Z get recommended to

the user as possible MSs.

4 Implementation and Validation

A proper MS should provide high execution efficiency with a desirable level of scala-

bility and availability. Furthermore the packages and components in it should be highly

cohesive and loosely coupled [1, 16]. In order to validate our MS discovery and rec-

ommendation process provides MSs with the desirable characteristics, we developed

a prototype6 based on the algorithm presented in Section 3.2 and experimented on

SugarCRM7 and ChurchCRM8 which is detailed in our technical report [17].

This section only presents the details of the experiments that we conducted using

the prototype on SugarCRM, which is a customer relationship management system that

has a complex system structure with more than 8,000 source files, 600 attributes divided

between 101 tables. We specifically focused on the campaign management module of

SugarCRM to generate the execution sequences for our microservice discovery pro-

cess. In order to cover all the user cases related to the campaign management module,

10 different executions9 related to the campaign management, such as target creation,

campaign creation, and template creation, were performed and their log data was gen-

erated using the SugarCRM system’s log functionality. The logs were then analyzed

using the process mining tool Disco10 and 10 different call graphs were generated, all

together containing around 200 unique execution nodes. The generated call graphs and

the database tables were provided as the input to the prototype.

Discovered MSs: Based on the call graphs and database tables, the prototype identi-

fied three subtypes of campaigns, namely newsletter, email, and non-email, which results

in functional splitting of the ES based on object subtypes (satisfying Heuristic 1). In ad-

dition, the prototype identified common sequences related to all the executions resulting

in functional splitting of the ES based on execution fragments (satisfying Heuristic 2).

Validation Process: The validation process was conducted by implementing the

recommended MSs in Google Cloud. Each MS was hosted in Google Cloud using

a cluster of size 2 which has two virtual CPUs and a total memory of 7.5 GB. The

hosted MSs were exposed through the Google Cloud kubernetes API, allowing third

6 https://github.com/AnuruddhaDeAlwis/Subtype.git

7 https://www.sugarcrm.com/

8 http://churchcrm.io/

9 http://support.sugarcrm.com/Documentation/Sugar_Versions/8.0/Pro/Application_Guide/

10 https://fluxicon.com/disco/



party computers to access them via API calls. In order to validate the sub-typing

recommendations, we implemented three MSs simulating newsletter, email, and non-

email campaigns, and another system to simulate the legacy campaign module which

covered all the campaign sub-types. In addition, we implemented a MS with common

segments, i.e., fragments with similar states, communicating with other MSs simulating

the common subgraphs recommendations given by the framework. Each MS was tested

against a load of 150,000 requests and 300,000 requests generated by 10 machines

simultaneously, simulating the customer requests, while recording their total execution

time, average memory consumption and average disk consumption. The results are

shown in Tables 1 and 2.

Based on the results reported in Tables 1 and 2, we calculated the scalability,

availability, and execution efficiency of different combinations and the results obtained

are summarized in Tables 3 and 4. The scalability was calculated according to the

resources usage over time as described by Tsai et al. [13]. In order to determine the

availability, first we calculated the time taken to process 100 requests if a particular

MS is not available. Then, we used the difference between the total up-time and total

down-time as described by Bauer et al. [14]. Efficiency gain was calculated by dividing

the time taken by the legacy system to process all requests by the time taken by each

MS. Furthermore we calculated the structural cohesion and coupling of the packages in

legacy system and the new MS systems as described by Candela et al. [4].

Experimental Results: According to Tsai et al. [13], the lower the number the better

the scalability. Thus, the newsletter and non-email MSs have better scalability than

the legacy system when considering both memory and disk usage over time (refer to

Table 3). In the email MS there is a scalability gain, even thought it is not as significant as

that of the gain in the newsletter and non-email MSs. When considering availability we

clearly observe that there is higher availability in subtype MSs than in the legacy system.

As the number of requests increased from 150,000 to 300,000, subtype MSs were able

to handle the request overload while providing better availability than the legacy system.

Most importantly, when examining the request processing efficiency, each subtyping

MS managed to process the request at at-least 1.5 times the speed of the legacy system.

Table 4 reports that there is not much of a gain in scalability and availability in the

MS discovered and developed based on Heuristic 2 when compared with the legacy

system. In contrast, when comparing the efficiency gain, it is evident that the common

MS managed to process requests at at-least twice the accelerated speed of the legacy

system. Furthermore, when comparing the coupling and cohesion values detailed in

Table 5, it is evident that both campaign and common MSs attained a higher level of

cohesion than the legacy system. In addition, the campaign MS managed to achieve

slightly better coupling when compared with the legacy system even though there is a

small increase in coupling in the common MS. Similar results were obtained for the

experiments conducted on ChurchCRM’s service management module [17].

Provided Solutions: The obtained results have affirmed that MSs extracted based

on the recommendation of our prototype can provide the same services to the users

while preserving overall system behaviour and achieving higher scalability, availability,

efficiency, high cohesion, and low coupling.



Campaign Type No. of Requests Ex. Time (ms) Avg Mem (GB) Avg Disk (GB)

Legacy 150,000 324,000 3.00375 2.09550

Legacy 300,000 741,600 3.04025 2.10050

Newsletter 150,000 201,600 2.95475 2.09150

Newsletter 300,000 396,000 3.00575 2.09975

Email 150,000 198,000 2.89075 2.09225

Email 300,000 446,400 2.97075 2.10125

Non-Email 150,000 226,800 2.84550 2.09300

Non-Email 300,000 432,000 2.92875 2.10125

Table 1: Legacy system vs subtype MSs execution results.

System Type No. of Requests Ex. Time (ms) Avg Mem (GB) Avg Disk (GB)

Legacy 150,000 399,600 3.0335 2.0915

Legacy 300,000 781,200 3.1665 2.1020

Common Seg. 150,000 194,400 2.9110 2.0926

Common Seg. 300,000 396,000 2.9905 2.1015

Table 2: Legacy system vs common subgraphs MSs execution results.

Campaign

Type

Scalability

[Mem]

Scalability

[Disk]

Availability

[150,000]

Availability

[300,000]

Efficiency

[150,000]

Efficiency

[300,000]

Legacy 2.652 2.626 99.856 99.918 1.000 1.000

Newsletter 1.963 1.937 99.910 99.956 1.607 1.873

Email 2.612 2.552 99.912 99.950 1.636 1.661

Non-Email 1.867 1.821 99.899 99.952 1.429 1.717

Table 3: Scalability, availability, and efficiency gains using subtyping.

Campaign Type Scalability

[Mem]

Scalability

[Disk]

Availability

[150,000]

Availability

[300,000]

Efficiency

[150,000]

Efficiency

[300,000]

Legacy 1.9947 1.9205 99.9334 99.9667 1.0000 1.0000

Common MS 2.1314 2.0839 99.9334 99.9667 2.0556 1.9727

Table 4: Scalability, availability, and efficiency gains using common subgraphs.

System Type Lack of Cohesion Structural Coupling

Legacy with campaign packages 104.00 17.00

MS with campaign packages 92.00 15.89

Legacy with commonality packages 55.83 18.00

MS with commonality packages 50.67 18.50

Table 5: Comparison of lack of cohesion and structural coupling.



5 Related Work

Microservices have emerged as the latest style of service-based software allowing sys-

tems to be distributed through the cloud as fine-grained components, typically with

individual operations, in contrast to services under SOA which include all logically

related operations [1]. Even though microservices can support the evolution of ERP

systems by providing exploitation in cloud-enabled platforms such as the IoT [2], the

research conducted in this particular area is limited. To the best of our knowledge there

is no research related to the automation of MS discovery in legacy systems, apart from

the manual migrations achieved by Balalaie et al. [15]. Balalaie et al. have described

the complexity associated with the system reengineering process while pointing out the

importance of considering BOs and their relationships in the migration system process.

Martin Fowler emphasizes the importance of adapting BO relationships in microser-

vices [16] aligning with the Domain Driven Design principles.

However, the existing software re-engineering techniques do not consider the com-

plex relationship of BOs with their behaviours in the re-engineering process. Further-

more, studies show that the success rate of existing software re-modularisation tech-

niques, especially for large systems, remains low [4]. A key stumbling block is the lim-

ited insights available from syntactic structures of software code for profiling software

dependencies and evaluating their measurements for coupling and cohesion metrics [5].

As such, to derive successful re-engineering techniques, a methodology should consider

the enriched semantic insights available through the BOs and functions in an ES.

In such a process, the first challenge would be identifying the BOs which are dis-

tributed among several database tables in an ES system, and identifying the relationships

between them. Nooijen et al. [12] and Lu et al. [8] proposed methodologies and heuris-

tics to identify BOs based on the database schema and information in database tables.

However, according to Lu et al., the derived BOs might not be perfect and they have to

be reclustered with the help of human expertise. A proper identification of BO relation-

ships should consider the behavioural aspects of the systems as described by Hull [11].

However, there is still a gap in the area of correlating such behaviour with the underline

BOs. As such, it is important to establish novel methodologies which incorporate both

system behaviours and the business objects in the software re-engineering process.

6 Conclusion

This paper presented two heuristics used for functional splitting of ESs based on ob-

ject subtypes and common execution fragments, while providing ground rules for MS

discovery. A prototype was developed based on the proposed heuristics and validation

was conducted by implementing the MSs recommended by the prototype for Sugar-

CRM and ChurchCRM. The study has demonstrated that analysis of functions and BO

CRUD operations while evaluating BO relationships helps to identify efficient solutions

to migrate legacy systems into MSs with high cohesion and low coupling while achiev-

ing better scalability, availability, and execution efficiency. However, further analysis of

BO relationships, such as inclusive and exclusive containment should be considered to

further optimize the MS discovery process, and this will be carried out as future work.
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